Skip to main content\(\newcommand{\N}{\mathbb N} \newcommand{\Z}{\mathbb Z} \newcommand{\Q}{\mathbb Q} \newcommand{\R}{\mathbb R}
\newcommand{\mc}[1]{\multicolumn{1}{c}{#1}}
\DeclareMathOperator{\cone}{cone} \newcommand{\x}{\mathbf x} \newcommand{\y}{\mathbf y} \newcommand{\z}{\mathbf z}
\newcommand{\vc}{\mathbf c} \newcommand{\vb}{\mathbf b}
\newcommand{\vs}{\mathbf s} \newcommand{\vt}{\mathbf t} \newcommand{\p}{\mathbf p} \newcommand{\q}{\mathbf q}
\newcommand{\ec}[1]{\enclose{circle}{#1}} \DeclareMathOperator{\lcm}{lcm} \newcommand{\eb}[1]{\enclose{box}{#1}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Appendix B Simplex Pivoter
Instructions for use are as follows:
First, enter in the number of variables and the number of bounds (the sizes of \(\vc, \vb\) respectively.)
In the cells generated below, fill in the entries.
In the tableau generated below, click on an entry to pivot on that entry.