Skip to main content\(\newcommand{\N}{\mathbb N} \newcommand{\Z}{\mathbb Z} \newcommand{\Q}{\mathbb Q} \newcommand{\R}{\mathbb R}
\newcommand{\mc}[1]{\multicolumn{1}{c}{#1}}
\DeclareMathOperator{\cone}{cone} \newcommand{\x}{\mathbf x} \newcommand{\y}{\mathbf y} \newcommand{\z}{\mathbf z}
\newcommand{\vc}{\mathbf c} \newcommand{\vb}{\mathbf b}
\newcommand{\vs}{\mathbf s} \newcommand{\vt}{\mathbf t} \newcommand{\p}{\mathbf p} \newcommand{\q}{\mathbf q}
\newcommand{\ec}[1]{\enclose{circle}{#1}} \DeclareMathOperator{\lcm}{lcm} \newcommand{\eb}[1]{\enclose{box}{#1}}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Appendix B Simplex Pivoter
Instructions for use are as follows:
-
First, enter in the number of variables and the number of bounds (the sizes of
\(\vc, \vb\) respectively.)
-
In the cells generated below, fill in the entries.
-
In the tableau generated below, click on an entry to pivot on that entry.